平成21年度 教育研究業績書

氏名 横田 浩

最終学歴	1987年3月大阪市立大学大学院理学研究科後期博士課程単位取得満期退学			
取得学位	大阪市立大学理学博士			
所属学会	日本物理学会、アメリカ物理学会、素粒子論グループ			
現在の専門分野	素粒子理論			
研究課題	熱場の量子論の相構造・相転移機構の研究			

【研究上の特記事項】

【教育上の特記事項】

【社会的活動】

パソコン入門講座、EXECL入門講座 桜井市教養講座

【学内活動】(学内職歴を含む)

情報処理センター所長 ネットワーク委員長、ホームページ委員長 図書館委員、個人情報保護管理委員、全学企画委員、全学自己点検・自己評価委員 教養部企画委員

著書、学術論文等の名称	単著、 共著 の別	発行又は 発表の年月	発行所、発表雑誌等 又は発表学会等の名称	概要
(著書)				
(学術論文)				
Analysis of the Phase Structure of Thermal QED/QCD through the HTL Improved Ladder Dyson-Schwinger Equation On the Gauge dependence of the Solution	共著	2010年3月	Bulletin of Research Institute (Nara University) No.18, pp,1-18	QED/QCD の相構造について、HTL Improved Ladder Dyson-Schwinger Equationを用いて解析し、得られた解のゲージ依存性を検討した。分析は主に強結合領域で行い、covariant gaugeの下で、Landau gaugeからFeymann gaugeまでの広いパラメター範囲で実行した。
フェルミ流体理論 に基づくクォーク 物質中の磁気感受 率	共著	2010年3月		クォーク物質中での自発的強磁 場生成を調べるため、正しい意 味でフェルミ流感受率の計算を実 基づいた磁気感受率の計算を実 行し、他の計算結果との比較を 行った。
(学会発表) Structure of the thermal quasi- particle	共著	2009年9月	子論とその応用」, 京	HTL Improved Ladder Dyson-Schwinger Equationを用いて、熱ゲージ場の準粒子の性質を分析した。特に、Spectral FunctionとDecay Rateについての結果を報告した。
Structure of the thermal quasi- particle	共著	2010年3月	日本物理学会第65回年 次大会、岡山大学	HTL Improved Ladder Dyson-Schwinger Equationを用いて、熱ゲージ場の準粒子の性質を分析した。主に、Decay Rateについての結果を報告した。
(その他)				